619 research outputs found

    Periodic orbits of the ensemble of Sinai-Arnold cat maps and pseudorandom number generation

    Full text link
    We propose methods for constructing high-quality pseudorandom number generators (RNGs) based on an ensemble of hyperbolic automorphisms of the unit two-dimensional torus (Sinai-Arnold map or cat map) while keeping a part of the information hidden. The single cat map provides the random properties expected from a good RNG and is hence an appropriate building block for an RNG, although unnecessary correlations are always present in practice. We show that introducing hidden variables and introducing rotation in the RNG output, accompanied with the proper initialization, dramatically suppress these correlations. We analyze the mechanisms of the single-cat-map correlations analytically and show how to diminish them. We generalize the Percival-Vivaldi theory in the case of the ensemble of maps, find the period of the proposed RNG analytically, and also analyze its properties. We present efficient practical realizations for the RNGs and check our predictions numerically. We also test our RNGs using the known stringent batteries of statistical tests and find that the statistical properties of our best generators are not worse than those of other best modern generators.Comment: 18 pages, 3 figures, 9 table

    Asymptotic Bound on Binary Self-Orthogonal Codes

    Full text link
    We present two constructions for binary self-orthogonal codes. It turns out that our constructions yield a constructive bound on binary self-orthogonal codes. In particular, when the information rate R=1/2, by our constructive lower bound, the relative minimum distance \delta\approx 0.0595 (for GV bound, \delta\approx 0.110). Moreover, we have proved that the binary self-orthogonal codes asymptotically achieve the Gilbert-Varshamov bound.Comment: 4 pages 1 figur

    Compositional Falsification of Cyber-Physical Systems with Machine Learning Components

    Full text link
    Cyber-physical systems (CPS), such as automotive systems, are starting to include sophisticated machine learning (ML) components. Their correctness, therefore, depends on properties of the inner ML modules. While learning algorithms aim to generalize from examples, they are only as good as the examples provided, and recent efforts have shown that they can produce inconsistent output under small adversarial perturbations. This raises the question: can the output from learning components can lead to a failure of the entire CPS? In this work, we address this question by formulating it as a problem of falsifying signal temporal logic (STL) specifications for CPS with ML components. We propose a compositional falsification framework where a temporal logic falsifier and a machine learning analyzer cooperate with the aim of finding falsifying executions of the considered model. The efficacy of the proposed technique is shown on an automatic emergency braking system model with a perception component based on deep neural networks

    Adaptive Multidimensional Integration Based on Rank-1 Lattices

    Full text link
    Quasi-Monte Carlo methods are used for numerically integrating multivariate functions. However, the error bounds for these methods typically rely on a priori knowledge of some semi-norm of the integrand, not on the sampled function values. In this article, we propose an error bound based on the discrete Fourier coefficients of the integrand. If these Fourier coefficients decay more quickly, the integrand has less fine scale structure, and the accuracy is higher. We focus on rank-1 lattices because they are a commonly used quasi-Monte Carlo design and because their algebraic structure facilitates an error analysis based on a Fourier decomposition of the integrand. This leads to a guaranteed adaptive cubature algorithm with computational cost O(mbm)O(mb^m), where bb is some fixed prime number and bmb^m is the number of data points

    Optimal randomized multilevel algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition

    Full text link
    In this paper, we consider the infinite-dimensional integration problem on weighted reproducing kernel Hilbert spaces with norms induced by an underlying function space decomposition of ANOVA-type. The weights model the relative importance of different groups of variables. We present new randomized multilevel algorithms to tackle this integration problem and prove upper bounds for their randomized error. Furthermore, we provide in this setting the first non-trivial lower error bounds for general randomized algorithms, which, in particular, may be adaptive or non-linear. These lower bounds show that our multilevel algorithms are optimal. Our analysis refines and extends the analysis provided in [F. J. Hickernell, T. M\"uller-Gronbach, B. Niu, K. Ritter, J. Complexity 26 (2010), 229-254], and our error bounds improve substantially on the error bounds presented there. As an illustrative example, we discuss the unanchored Sobolev space and employ randomized quasi-Monte Carlo multilevel algorithms based on scrambled polynomial lattice rules.Comment: 31 pages, 0 figure

    Massively Parallel Construction of Radix Tree Forests for the Efficient Sampling of Discrete Probability Distributions

    Full text link
    We compare different methods for sampling from discrete probability distributions and introduce a new algorithm which is especially efficient on massively parallel processors, such as GPUs. The scheme preserves the distribution properties of the input sequence, exposes constant time complexity on the average, and significantly lowers the average number of operations for certain distributions when sampling is performed in a parallel algorithm that requires synchronization afterwards. Avoiding load balancing issues of na\"ive approaches, a very efficient massively parallel construction algorithm for the required auxiliary data structure is complemented

    Uniform distribution of sequences of algebraic integers

    Get PDF

    Applying dissipative dynamical systems to pseudorandom number generation: Equidistribution property and statistical independence of bits at distances up to logarithm of mesh size

    Full text link
    The behavior of a family of dissipative dynamical systems representing transformations of two-dimensional torus is studied on a discrete lattice and compared with that of conservative hyperbolic automorphisms of the torus. Applying dissipative dynamical systems to generation of pseudorandom numbers is shown to be advantageous and equidistribution of probabilities for the sequences of bits can be achieved. A new algorithm for generating uniform pseudorandom numbers is proposed. The theory of the generator, which includes proofs of periodic properties and of statistical independence of bits at distances up to logarithm of mesh size, is presented. Extensive statistical testing using available test packages demonstrates excellent results, while the speed of the generator is comparable to other modern generators.Comment: 6 pages, 3 figures, 3 table
    • …
    corecore